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Abstract	

We	live	in	an	era	of	complexity	marked	by	impressive	new	tools	powering	the	scientific	

method	to	accelerate	discovery,	prediction,	and	control	of	increasingly	complex	systems.	In	

common	with	many	disciplines	and	societal	challenges	and	opportunities,	materials	and	

condensed	matter	sciences	are	beneficiaries.	The	volume	and	fidelity	of	experimental,	

computational,	and	visualization	data	available,	and	tools	to	rapidly	interpret	them,	are	

remarkable.	Conceptual	frameworks,	including	multiscale,	multiphysics	modeling	of	this	

complexity,	are	fueled	by	the	data	and,	in	turn,	guide	directions	for	future	experimental	and	

computational	strategies.	In	this	spirit,	we	discuss	the	importance	of	competing	

interactions,	length	scales,	and	constraints	as	pervasive	sources	of	spatio-temporal	

complexity.	We	use	representative	examples	drawn	from	materials	and	condensed	matter,	

including	the	important	role	of	elasticity	in	some	technologically	important	quantum	

materials.	
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1. INTRODUCTION 

Over	the	last	few	decades	there	has	been	transformational	change	in	the	materials	

communities’	ability	to	synthesize	a	great	variety	of	hard,	soft,	and	biological	matter,	to	

accurately	measure	its	properties	on	multiple	spatial	and	temporal	scales,	and	to	faithfully	

simulate	and	visualize	significantly	complex	systems	on	physically	relevant	scales.	Fig.	1	

illustrates	a	(subjective)	schematic	of	that	history.	

 

We	are	now	reaping	the	benefits	of	this	productive	period	and	experiencing	a	golden	age	

on	the	path	to	the	holy	grail	of	materials	science—understanding	and	controlling	

synthesis–structure–property	relationships,	and	using	them	to	design	materials	with	

desired	functionalities.	On	this	journey	toward	more	successful	conceptual	theoretical	and	

modeling	frameworks,	it	has	been	important	to	bring	together	traditional	metallurgical	and	

materials	frameworks	with	solid	state,	condensed	matter	and	many-body	physics	concepts	

and	experimental/theoretical	tools:	e.g.,	appreciating	the	intrinsic	roles	of	both	structure	

and	entropic	fluctuations,	ordered	and	disordered	materials,	the	coupling	of	spin,	charge,	

lattice	and	orbital	degrees-of-freedom,	and	the	roles	of	dimensionality,	geometry	and	

topology.	This	has	led	to	an	increase	in	the	understanding	of	multiscale,	multiphysics	

frameworks,	and	the	essential	functional	roles	that	specific	scales	play	in	controlling	

materials	behaviors	and	applications.	In	this	article,	we	emphasize	currently	studied	

quantum	materials	such	as	pervoskites.	

	

To	place	this	era	in	a	broader	science	and	technology	context,	we	note	that	it	has	

appropriately	been	labelled	the	“century	of	complexity”	(1,	2).	Data	are	now	available	from	
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new	generations	of	experimental	probes	and	sensors—from	biology	to	cosmology	and	

from	deep	oceans	to	the	deep	space.	The	data	are	fortunately	matched	by	equally	notable	

advances	in	computational	power	and	architectures,	co-designed	with	algorithms	to	

address	significantly	more	realistic	multiscale,	multiphysics,	and	multi-functional	

phenomena.	The	massively	greater	volume	and	fidelity	of	the	experimental	and	simulation	

data	are	resulting	in	powerful	partnerships	of	data	science	with	application	and	discipline	

specific	expertise	to	extract	relevant	patterns,	even	in	situ	and	on-the-fly,	to	inform	more	

predictive	theory	and	simulations	and	guide	experiments.	The	nature	of	the	phenomena	

now	being	tackled	are	in	many	cases	“complex	systems	and	networks,”	requiring	not	only	

the	new	tools	but	new	concepts,	where	reductionism	is	extended	beyond	isolating	

individual	functions	from	their	environment	to	identifying	key	collective	elements	which	

couple	strongly	into	a	system.		

	

A	fundamental	issue	for	such	complex	systems	is	understanding,	measuring,	simulating,	

modeling,	controlling,	and	applying	“mesoscale”	collective	spatial	patterns	and	their	

dynamics.	The	mesoscale	elements	are	often	the	critical	and	rate-limiting	bridges	between	

microscopic	and	macroscopic	levels	of	description	for	relevant	macroscopic	functions	—	

faithfully	passing	information	between	these	scales	lies	at	the	heart	of	all	predictive	

multiscale	descriptions.	While	this	mesoscale	importance	applies	to	many	disciplines,	the	

discussion	here	is	limited	to	a	sampling	of	examples	from	materials	and	condensed	matter.	

The	complexity	origins	discussed	are	not	exhaustive	but	intended	to	illustrate	some	

important	origins	of	mesoscopic	patterns	in	materials,	including	the	importance	of	

elasticity	in	many	currently	studied	quantum	materials.	
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Patterns	are	typically	the	result	of	competitions	of	scales.	In	turn,	these	competitions	are	

frequently	the	result	of	coupled	degrees-of-freedom,	which	produce	effective	nonlinearities	

and	hence	intrinsic	new	scales.	In	materials	and	condensed	matter,	the	degrees-of-freedom	

include	spin,	charge,	orbital,	and	lattice,	as	well	as	their	coupling	to	external	fields	(stress,	

electrical,	magnetic,	optical,	etc.)	Early	examples	of	this	perspective	can	be	found	in	Ref.	(3).	

	

Lattice	dislocations	(and	more	generally	discommensurations)	are	familiar	mesoscopic	

(topological)	textures	in	materials,	controlling	important	macroscopic	properties	such	as	

slip,	yield,	and	transport.	Edge	and	spiral	dislocations	also	appear	in	multi-dislocation	

patterns.	Together	with	their	relatives,	twins	and	tweed,	these	mesoscale	structures	are	

essentially	the	result	of	competing	energies	—	potential,	strain,	kinetic	—	and	constraints.	

This	feature	of	competitions	and	constraints	is	the	focus	of	the	examples	below.	

2. STRAIN-BASED ELASTICITY: THE ROLE OF CONSTRAINTS 

Even	one-dimensional	(1-d)	lattices	with	competing	interactions	can	exhibit	emergence	of	

incommensurate	mesoscopic	patterns	as	ground	states	and	excitations.	Ref.	(4)	is	an	early	

example,	extending	the	familiar	Frenkel-Kontorova	model	of	dislocations	with	non-convex	

interparticle	(strain)	interactions.	This	results	in	twinning-like	patterns	and	was	a	

precursor	to	later	atomic-scale	formulations	of	elasticity	in	general-d,	introducing	essential	

lattice	symmetry	and	compatibility	constraints,	which	we	now	discuss.		
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Symmetry-constrained	coupling	of	acoustic	and	optic	modes	is	key	to	strong	on-lattice	(off-

lattice	is	a	different	analysis	path)	elasticity,	resulting	in	intrinsic	multiscale	phenomena	—	

atomic-scale	distortions	affect	structural	patterns	at	long	ranges	and	boundaries,	and	vice	

versa.	This	is	especialy	important	in	electronically	localized	(d,	f-shell)	quantum	materials,	

including	perovskites.	The	localized	orbitals	lead	to	many	novel	localization–delocalization	

charge/orbital/spin	broken-symmetries,	but	ALSO	strong,	long-range	and	anisotropic	

elasticity.	

	

For	illustration,	we	consider	here	the	class	of	materials	known	as	ferroelastic	martensites.	

Ferroelasticity	is	the	existence	of	two	or	more	stable	orientation	states	of	a	crystal	that	

correspond	to	different	arrangements	of	the	atoms,	but	are	structurally	identical	

(enantiomorphous)	(5).	These	orientation	states	are	degenerate	in	energy	in	the	absence	of	

mechanical	stress.	The	term	martensitic	usually	refers	to	a	diffusionless	first-order	phase	

transition	that	can	be	described	in	terms	of	one	(or	successive)	shear	deformations	from	a	

parent	to	a	product	phase.	[Schematic	illustrations	in	two-dimensional	(2-d)	cases	are	

shown	in	Fig.	2.]	The	morphology	and	kinetics	of	the	transition	are	dominated	by	the	strain	

energy,	and	the	transition	results	in	characteristic	lamellar	(twinned)	microstructures.	

	

Features	observed	in	proper	ferroelastic	crystals	include	mechanical	hysteresis	and	

mechanically	switchable	domain	patterns.	Ferroelasticity	usually	occurs	as	a	result	of	a	

phase	transition	from	a	nonferroelastic	high-symmetry	parent	phase	and	is	associated	with	

the	softening	of	an	elastic	modulus	with	decreasing	temperature	or	increasing	pressure	in	

the	parent	phase.	Since	the	ferroelastic	transition	is	normally	weakly	first	order,	or	second	
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order,	it	can	be	described	to	a	good	approximation	by	Landau	theory	with	spontaneous	

strain	or	deviation	of	a	given	ferroelastic	orientation	state	from	the	parent	phase	as	the	

order	parameter	(OP).	The	strain	can	be	coupled	to	other	fields	such	as	electric	polarization	

and	magnetic	moment,	and	thus	the	crystal	can	have	more	than	one	transition.		

	

Dynamics	plays	a	central	role	in	proper	ferroelastic	transitions	(5,	6,	7).	These	materials	

undergo	diffusionless,	displacive	transitions,	with	strain	components	as	the	primary	OP,	

and	develop	complex	microstructures	during	their	evolution,	finally	forming	spatially	

varying,	multiscale	textures	(strain	patterns).	Ferroelastics	include	materials	of	

technological	importance	such	as	superconducting	cuprates	(8)	and	colossal	

magnetoresistance	manganites	(9).		

	

Many	dynamical	models	have	been	proposed	(see	Ref.	6)	to	follow	specific	aspects	of	

ferroelastic	pattern	formation	such	as	nucleated	twin-front	propagation,	width	length	

scaling	of	twin	dimensions,	tweed,	stress	effects,	elastic	domain	misfits,	acoustic	noise	

generation,	etc.	In	Ref.	(6),	symmetry-specific	OP	strain	dynamics	are	derived	for	proper	

ferroelastics,	determining	the	precise	form	of	long-range	potentials	that	emerge,	as	well	as	

the	regime	of	validity	of	time-dependent	Ginzburg	Landau	(TDGL)	equations	for	strain	

dynamics,	including	explicit	noise	terms.	A	central	role	is	played	by	the	Nc	“St.	Venant	

compatibility	conditions”	(10)	for	the	N=Nop+n	symmetry	adapted	strains,	which	encode	

the	absence	of	broken	bonds	(i.e.,	ensure	lattice	integrity),	and	allow	the	n	non-OP	strains	

to	be	expressed	in	terms	of	Nop	order	parameter	strains.	(Lattice	defects	and	ruptures	are	

an	extension	of	this	approach.)	The	following	is	shown	in	(6):	(i)	An	underdamped	set	of	
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Nop	equations	can	be	obtained	for	the	OP	strains	alone	with	naturally	emerging	anisotropic,	

long-range	contributions	to	OP	potentials,	friction,	and	noise;	(ii)	The	same	OP	equations	

can	be	obtained	either	by	varying	the	displacement	or	by	varying	the	strains	subject	to	the	

compatibility	constraint	through	dynamic	Lagrange	multipliers;	and	(iii)	Omitting	strain	

inertial	terms	yields	strain	TDGL	equations	with	(in	general)	nonlocal	Onsager	coefficients	

controlling	late-time	dynamics	for	the	damping	envelope	of	texture	oscillations.	

	

Explicit	numerical	demonstrations	of	(i),	(ii),	(iii)	for	the	2-d	triangular	to	centered	

rectangular	or	TR	lattice	transition	(Nop=2,n=1,Nc=1)	and	for	the	square	to	rectangular	or	

SR	lattice	transition	(Nop=2,n=2,Nc=1),	as	well	as	dynamics	for	all	other	allowed	2-d	

symmetries	are	detailed	in	(6).	The	procedure	can	be	generalized	to	3-d,	e.g.,	cubic	to	

tetragonal	(Nop=2,n=4,Nc=6)	(11).		

	

The	central	result	is	dynamics	written	in	the	OP	strains	{𝜀#}	ℓ = 1,2…Ν-. 		alone,	

	

	 𝜌0𝜀ℓ̈ =
2ℓ
3

4
∆66⃗ 8 9:(<=<

>)
:@ℓ

+ :(B=B>)
:@̇ℓ

D + 𝘨Fℓ + 𝘨Fℓ2 	,	 Eq.	1	

	

where	cℓ	is	a	symmetry-specific	constant,	and	ρ0	is	a	scaled	mass	density.	Fc({εℓ}),Rc({𝜀̇ℓ})	

are	the	compatibility-induced	symmetry-specific	contributions	that	emerge	explicitly	from	

the	non-OP	free	energy	as	additions	to	the	OP	free	energy	F	and	OP	Rayleigh	dissipation	R,	

while	𝘨Fℓ2 	is	the	corresponding	noise	term	that	adds	to	the	OP	noise	𝘨Fℓ	.	In	Eq.	(1),	the	

symbol	∆66⃗ 	is	used	to	denote	dimensionless	discrete	derivatives	on	a	reference	lattice.	The	
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equations	can	be	written	(6)	as	Langevin	equation	for	𝜀#(𝜅, 𝑡)	and	𝑣# = 𝜀J̇(𝜅, 𝑡),	yielding	

statistically	equivalent	Fokker-Planck	equations	for	the	probability	Ρ({𝜀#, 𝑣#}, 𝑡).	

	

The	Nop	strain	order-parameter	equations	with	derived	explicit	anisotropic	long-range	

terms	are	equivalent	to	the	d	displacement	equations	that	do	not	explicitly	have	such	

terms.	An	advantage	of	the	OP	strain	approach	is	that	it	uses	those	anisotropic	long-range	

correlations,	which	are	valuable	in	understanding	simulated	textures	and	relating	to	other	

systems	with	long-range	interactions	(see	below).	The	compatibility	conditions	can	be	

viewed	as	the	integrability	conditions	for	the	strain	tensor	as	a	function	of	the	

displacement	field.	The	compatibility	equation	for	strain	has	also	been	used	for	a	consistent	

description	of	forces	in	liquids;	(12,	6).	This	approach	is	in	the	spirit	of	the	Landau	

description	of	phase	transitions:	(13)	namely	working	with	the	order	parameters	as	the	

basic	physically	relevant	variables,	and	focusing	on	the	order-parameter	symmetries	(as	

encoded	in	the	lattice	compatibility	factors),	as	the	consequent	source	of	ferroelastic	

texturing.		

	

Full	details	of	the	symmetry-restricted	GL	analysis	and	dynamics	can	be	found	in	(6).	Here	

we	illustrate	in	Figs.	3	and	4	some	of	the	physical	consequences	of	the	combined	effects	of	

lattice-scale	symmetry	(compatibility)	conditions	and	the	long-range,	anisotropic	strains	

which	they	self-consistently	induce.	An	extensive	survey	of	this	strain-based	compatibility	

approach,	with	extensions	to	other	2-d	and	3-d	situations,	can	be	found	in	(14).	
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3. COUPLING STRUCTURE WITH ELECTRONIC AND MAGNETIC FIELDS 

In	the	spirit	of	this	article,	we	now	consider	the	effects	of	the	above	intrinsic	elastic	

patterning	on	coupled	electronic	and	magnetic	degrees-of-freedom,	which	can	inherit	

complementary	multiscale	spatio-temporal	phenomena.	

	

Electronic	properties	of	twinned	structures	are	discussed	in	(15).	Here	we	consider,	as	

another	example,	the	intrinsic	coexistence	of	distinct	metallic	and	insulating	electronic	

phases	in	a	perovskite	manganite	(16,	17),	such	as	La1-x-yPryCaxMnO3,	which	presents	

opportunities	for	sensitively	tuning	the	electronic	properties.	In	particular,	colossal	

magnetoresistance	(18)	in	these	materials	is	closely	related	to	the	observed	texture	owing	

to	coexisting	nanometer-	and	micrometer-scale	inhomogeneities.	Extensive	data	from	

various	high-resolution	probes	show	the	existence	of	such	inhomogeneities	(16,	17).	

Experimental	results	also	support	the	presence	of	metastable	states	in	manganites.	For	

example	(see	Ref.	16,	17),	magnetic	fields	or	X-rays	have	been	used	to	convert	insulating	

regions	into	ferromagnetic	metallic	ones,	which	are	stable	even	when	the	fields	are	

removed.	Explanations	based	on	electronic	mechanisms	and	chemical	disorder	(16,	17)	

have	not	been	sufficient	to	describe	the	multiscale,	multiphase	coexistence	within	a	unified	

picture.	Lattice	distortions	and	long-range	strains	are	known	to	be	important	in	the	

manganites	(19).	In	Ref.	(16),	it	is	shown	that	the	texturing	can	be	due	to	the	intrinsic	

complexity	of	a	system	with	strong	coupling	between	the	electronic	and	elastic	degrees	of	

freedom.	This	leads	to	“landscapes”	of	energetically	favorable	configurations	and	provides	

a	natural	mechanism	for	self-organized	inhomogeneities.		
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To	capture	salient	aspects	of	electron–lattice	coupling	in	manganites,	Ref.	(16)	uses	a	

model	in	which	the	phase	with	short-and	long-wavelength	lattice	distortions	is	insulating,	

and	that	without	lattice	distortion	is	metallic.	The	structural	templates	then	drive	novel	

electronic,	magnetic,	and	optical	properties.	This	approach	also	provides	a	basis	for	

understanding	other	observed	features	(see	Ref.	16,	17),	such	as	precursor	short-range	

ordering	and	quasi-elastic	scattering	near	the	phase-transition,	hysteretic	and	glassy	

dynamics,	metastability	and	photo-induced	insulator–metal	transitions.	

	

The	lattice	distortions	in	manganites	closely	follow	the	state	of	the	outermost	shell	(𝑒M)	

electrons	on	Mn	ions	through	a	Jahn–Teller	coupling	(19).	If	an	𝑒M	electron	is	localized	at	a	

Mn	site	in	the	insulating	phase,	the	symmetry	of	the	surrounding	oxygen	octahedron	is	

lowered	from	cubic	to	tetragonal.	At	low	temperatures,	the	distorted	octahedra	stack	in	

specific	patterns,	referred	to	as	charge	and	orbital	ordering.	For	example,	in	La0.5Ca0.5MnO3,	

the	long	Mn–O	bonds	of	the	elongated	octahedra	form	a	zigzag	pattern	in	the	x–y	plane	

(20),	giving	rise	to	short-wavelength	lattice	distortions.	The	stacking	of	the	short	Mn–O	

bonds	along	the	z-direction	is	responsible	for	the	long-wavelength	tetragonal	(more	

accurately	orthorhombic)	distortion.	Such	lattice	distortions	are	absent	in	the	metallic	

phase	because	the	𝑒M	electrons	are	delocalized.	

	

Coupled	short-	and	long-wavelength	modes	in	a	cubic	anharmonic	elastic	energy	(see	Fig.	5	

caption)	give	rise	naturally	to	an	energy	landscape	with	multiple	energy	minima.	For	

illustration,	we	consider	here	two	cases	with	different	harmonic	moduli	for	short-

wavelength	lattice	distortions	as	shown	in	Fig.	5,	one	giving	a	shallow	(blue	curve,	a	small	
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modulus)	and	the	other	a	deep	(red	curve,	a	large	modulus)	local	minimum	for	the	

undistorted	phase.	Solid	circles	in	the	inset	represent	locations	of	energy	minima	for	our	

model.	The	modulus	can	be	changed,	for	example,	by	varying	the	average	size	of	the	rare-

earth	and	alkali-metal	ions	(often	as	parametrized	as	a	“tolerance	factor”)	(21).	

	

Figure	6a–h	shows	the	sequential	relaxations	for	the	shallow	local	minimum	case	starting	

from	random	initial	𝑠O	and	𝑠Pvalues	(see	Fig.	5	caption),	corresponding	to	a	rapid	

quenching	of	the	system	from	high	temperature.	The	results	are	conveniently	represented	

in	terms	of	𝑝R = 𝑠O8 − 𝑠P8.	Positive	(red)	and	negative	(blue)	values	of	𝑝R	correspond	to	

different	orientations	of	short-	or	long-wavelength	lattice	distortions	(𝑠O	with	negative	𝑒R	

and	𝑠P	with	positive	𝑒R).	The	short-	and	long-wavelength	mode	distortions	are	

simultaneously	generated	through	the	minimal	symmetry-allowed	coupling	between	𝑒R	

and	𝑠O8, 𝑠P8		at	each	site.	The	green	regions	with	zero	𝑝R	have	no	distortions.	Most	of	the	

region	initially	relaxes	to	the	undistorted	local	minimum	state	(Figs.	6c	and	d),	because	the	

rapidly	fluctuating	initial	field	contains	few	components	of	the	long-wavelength	strain	

modes,	making	it	difficult	for	the	system	to	reach	the	global	minimum.	However,	even	in	

the	presence	of	the	random	field,	there	are	regions	with	some	correlation,	which	eventually	

lead	to	nanometer-scale	nucleating	droplets.	Comparison	of	Fig.	6b–d	shows	that	there	is	a	

critical	strength	and	size	of	these	droplets,	a	common	feature	of	first-order	phase	

transitions.	However,	here	the	long-range	nature	and	anisotropy	of	the	interaction	between	

strain	fields	control	the	nucleation	process	(16),	and	are	a	likely	source	of	the	observed	

nanometer-scale	inhomogeneities	(16,	17),	the	anisotropic	short-range	precursor	
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correlations	at	high	temperatures,	and	the	quasielastic	central	peak	in	neutron	scattering	

near	the	metal–insulator	phase-transition.	

	

Figures	6i	and	j	shows	the	calculated	tight-binding	electronic	structure	supported	by	the	

lattice	distortion	template	in	Fig.	6f.	For	illustration,	we	have	used	a	Su–Shrieffer–Heeger	

(SSH)	electron–lattice	coupling	model	(22)	(with	one	electron	per	site)	to	incorporate	the	

dependence	of	the	electron	transfer	probability	on	interatomic	distances.	This	SSH	model,	

together	with	the	specific	coupling	between	short-	and	long-wavelength	lattice	modes,	

gives	rise	to	electronic	phases	for	undistorted	and	distorted	structures.	The	typical	local	

electronic	density	of	states	(DOS)	versus	electronic	energy	shown	in	Fig.	6j	indeed	indicates	

a	metallic	local	DOS	in	the	undistorted	region	and	a	gapped	(insulating)	local	DOS	within	

the	distorted	region.	For	the	Fermi	energy	𝐸U = 0,	the	local	DOS	configuration	in	direct	

space	is	shown	in	Fig.	6i.	This	illustrates	the	coexistence	of	metal	(green)	and	insulator	

(blue)	associated	with	the	elastic	texture	template,	similar	to	that	observed	in	manganites	

(23).	For	the	deeper	local-minimum	case,	the	simulation	of	the	annealing	process	from	

random	initial	configurations	shows	characteristic	features	of	metastability	or	a	

supercooled	state,	such	as	a	low	probability	of	creating	nucleation	droplets.	A	typical	result	

is	shown	in	Fig.	7a.	The	energy	landscape	near	the	undistorted	state	is	deep	enough	that	

the	coexisting	phase	of	metal	and	insulator	is	stable,	unlike	the	shallow	local-minimum	case	

above.	Such	stable	coexistence	of	metallic	and	insulating	domains	is	similar	to	the	

submicrometer	size	multiphase	coexistence	observed	in,	e.g.,	La1-x-yPryCaxMnO3	(24).	

Thermal	fluctuations	at	finite	temperatures	can	slowly	grow	the	distorted	region	—	such	

slow,	history-dependent	dynamics	with	time-scales	that	range	from	minutes	to	hours	has	
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also	been	observed	in	various	manganites	(25).	Figures	7b,	c	show	the	corresponding	

electronic	inhomogeneities	within	our	SSH	model.	The	local	DOS	for	the	sites	deep	within	

the	domain	shows	a	clear	gap	near	electronic	energy	𝐸 = 0.	Thus,	for	𝐸U = 0,	the	metallic	

and	insulating	phases	coexist	with	relatively	sharp	boundaries,	as	observed	in	STM	images	

(23).	A	magnetic	field	is	expected	to	modify	the	energy	landscape	in	favor	of	the	

undistorted	ferromagnetic	metallic	state,	consistent	with	reduction	of	the	quasi-elastic	

scattering	spectral	weight	by	applied	magnetic	fields	(26).		

	

The	above	results	illustrate	how	the	micrometer-scale	multiphase	coexistence	can	be	self-

organized	and	result	from	the	presence	of	an	intrinsic	elastic	energy	landscape.	Because	

the	domain	formation	is	self-sustained,	external	stimuli	such	as	optical	lasers,	X-rays,	or	

ultrasonic	standing	waves	can	be	used	to	sensitively	manipulate	patterns	of	metallic	and	

insulating	regions,	thus	making	the	control	of	nano-engineered	functional	structures	

feasible	(15,	27).	

	

The	mechanisms	we	have	proposed	here	can	be	applied	to	describe	intrinsic	

inhomogeneities	in	other	materials	with	strong	bonding	constraints,	such	as	relaxor	

ferroelectrics	and	high-transition-temperature	(high-Tc)	superconducting	oxides,	where	

the	functionalities	may	also	be	mediated	through	self-organized	lattice	distortions	(28).	

More	generally,	there	are	many	materials	where	the	above	approach	to	coupling	lattice,	

spin,	charge,	and	orbital	degrees-of-freedom,	including	elastically-driven	transitions,	can	be	

applied.	For	instance,	epitaxial	oxide	layers	and	multilayers	provide	extensive	tunability	for	

technology	(29),	and	magnetocalorics	(30)	are	studied	for	their	potential	application	as	
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efficient	refrigeration	and	waste-recovery	materials.	There,	as	in	many	realistic	

applications,	the	above	analysis	applies	to	individual	grains,	with	the	intra-grain	textures	

providing	stresses	for	inter-grain	interaction	and	growth.	Multi-grain	structures	are	

beyond	the	scope	of	the	present	discussion	but	usually	require	coarser-scale	(e.g.,	phase-

field	and	finite-element)	modeling.	

5. ELASTICITY-DRIVEN SELF-ORGANIZATIONS OF SMALL POLARONS 

Although	the	situation	is	improving	with	computing	power,	ab	initio	supercell	calculations	

for	localized	orbital	(d,	f)	materials	are	not	well-suited	to	capturing	mesoscopic	landscapes,	

including	elasticity	effects.	Of	course,	elasticity	has	its	origins	in	the	total	energy	of	a	solid,	

including	the	Coulomb	contributions.	Indeed,	if	atoms	are	allowed	to	relax	self-consistently	

in	a	Coulomb	field,	many	of	the	elasticity	features	above	(multipole	screening,	etc.)	must	be	

recovered.	We	will	illustrate	similar	long-range	field	effects	in	examples	below.	However,	

first	we	consider,(31),	as	a	second	example	of	coupling	strain	with	other	degree-of-

freedom,	elasticity-driven	self-organization	of	small	polarons.	In	Ref.	(3),	it	is	shown	that,	in	

a	generalization	of	the	adiabatic	Holstein	polaron	model	(31),	a	bound	polaronic	state	acts	

as	an	impurity	and	induces	strong	long-range,	angular	dependence	in	long-range	elastic	

fields	but	a	localized	electronic	core.	The	elastic	fields	thus	provide	an	anisotropic,	indirect	

interaction	between	polarons	extending	to	large	distances.	For	a	given	density	of	polarons,	

this	interaction	favors	the	formation	of	strings	of	polarons	in	preferred	directions.	Ref.	(31)	

demonstrates	this	on	a	2-d	square	lattice.	

	

The	symmetry-adapted,	principal	strains	for	a	2-d	square	lattice	can	be	written	as	
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	 𝑒W =
W
√8
Y𝜖OO + 𝜖PP[;			𝑒8 =

W
√8
Y𝜖OO − 𝜖PP[;			𝑒R = 𝜖OP = 𝜖PO	,	 	

	

where	𝑒W	is	the	compressional	or	dilatational	strain,	𝑒8	the	deviatoric	strain,	and	𝑒R	the	

shear	strain	associated	with	a	unit	cell.	In	the	small	strain	regime,	the	Lagrangian	strains,	

𝜖#] ,	are	defined	by	

	

	 𝜖#] =
W
8
^_`a
_Ob

+ _`b
_Oa
c	,	 	

	

where	𝑢# ,	i=1,2	are	the	two	displacements	in	the	x	and	y	directions.	As	noted	in	Section	2,	

the	three	strains	in	2-d	are	not	all	independent	and	are	related	in	a	bond-intact	medium	by	

the	St.	Venant	compatibility	(6)	constraint		

	

𝜕O8𝜖PP + 𝜕P8𝜖OO − 2𝜕O𝜕P𝜖OP = 0	,	

	

which	in	terms	of	the	symmetry	adapted	strains	becomes	

	

	 Y𝜕O8 + 𝜕P8[𝑒W − Y𝜕O8 − 𝜕P8[𝑒W − √8𝜕O𝜕P𝑒R = 0	.	

	

The	displacements	can	be	obtained	as	derived	variables,	within	an	arbitrary	constant,	from	

strain	by	Fourier	transformation.	
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In	(31),	a	quantum	particle	(charge)	is	introduced	as	an	extension	of	the	Holstein	polaron	

model.	The	elastic	distortions	of	the	lattice	and	the	particle’s	quantum	wave-function	are	

then	deduced	self-consistently	in	an	adiabatic	approximation.	Here,	we	illustrate	the	

results	for	multiple	polarons	in	Fig.	8.	For	strong	charge-lattice	coupling,	the	polarons	are	

electronically	very	localized	(small	polarons),	but	their	effect	on	the	strain	fields	is	long-

ranged	and	highly	directional,	reflecting	the	discrete	square	lattice	symmetry.	Notice	the	

effect	of	the	strain	on	the	polaron	ordering	into	filamentary	landscapes	of	strings.	Natural	

extensions	include	effects	of	disorder,	chemical	structure,	interfaces,	and	microstructure	on	

polaron	patterns.	

	

Small	polaron	center	of	mass	motion	(quantum	tunneling)	is	very	slow	due	to	Peierls–

Nabarro	lattice	pinning.	However,	an	interesting	addition	to	the	above	effects	of	elasticity	

on	polarons	is	to	include	the	internal	quantum	mechanical	tunneling	dynamics	of	coupled	

charge	and	lattice	(bond-lengths)	within	a	polaron.	This	intrinsic	local	dynamics	results	in	a	

dynamical	screening	of	the	long-range	elastic	fields	(32),	depending	on	the	tunneling	

frequency.	Since	the	internal	tunneling	rate	is	slow	for	small	polarons,	the	screening	is	

weak	but	it	becomes	stronger	(i.e.,	reduces	the	elastic	range)	as	the	tunneling	rate	

increases	with	polaron	size.	Simultaneously,	the	polaron	mass	increases	and	the	lattice	

barrier	to	polaron	center-of-mass	translation	decreases.	

5. COEXISTING SHORT- AND LONG-RANGED INTERACTIONS 



Annual Review of Materials Research: Submission 
Alan R. Bishop, Los Alamos National Laboratory 

 

 18 

The	above	examples	of	elastically-driven	multiscale	textures	are	examples	of	a	much	larger	

class	of	phenomena	resulting	from	coexisting	short-	and	long-range	interactions.	Ref.	(33)	

describes	many	cases.	Here	we	use	a	few	examples	to	emphasize	some	important	features.	

	

Josephson	Junction	Arrays	(JJAs)	are	a	fascinating	template	on	which	to	study	connections	

between	space	and	time	in	complex	dynamical	systems.	Many	experimental	and	simulation	

studies	have	been	made	for	1-d,	2-d	and	3-d	JJAs	(see	Ref.	34),	revealing	the	importance	of	

magnetic	flux	patterns	(induced	by	applied	magnetic	fields)	and	their	dynamics.	

	

As	an	example,	we	summarize	here	molecular	dynamics	(MD)	simulations	of	one	specific	2-

d	case	(34)	to	demonstrate	the	phenomena	of	“glassy”	dynamics	observed	in	many	

materials	and	condensed	matter	systems	(3,	35).	Extensions	to	3-d	JJAs	studied	with	

Langevin	MD	can	be	found	in	Ref.	(36).	We	consider	the	relaxation	from	an	initially	random	

flux	state	and	follow	the	multiple	length	and	time	scales	involved.	This	noisy	relaxation	is	

controlled	by	the	dynamics	of	various	“defect”	structures	(specifically	topological	vortices	

and	domain	walls)	defined	with	respect	to	the	underlying	ground-state	flux	structure.	As	in	

traditional	materials	science	(3),	the	mesoscopic	defects,	their	collective	patterns,	and	their	

dynamics	control	a	complex	macroscopic	response,	but	are	themselves	microscopically	

controlled	by	the	competitions	producing	the	ground-state	flux	complexity.	The	case	we	

show	is	controlled	by	competition	between	symmetries	—	the	square	symmetry	of	an	

underlying	lattice	and	the	preferred	hexagonal	(Abrikosov)	symmetry	of	flux	patterns	

induced	by	an	applied	magnetic	field.	Multiscale	responses	have	been	observed	in	many	

other	competing	interaction	systems	(3,	35,	37).	Various	“creep”	and	“stretched-
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exponential”	regimes	have	been	proposed	(38),	as	well	as	phenomenological	scaling	

theories	relating	spatial	domain	sizes	with	temporal	scales	(39).		

	

The	Hamiltonian	for	the	JJA	takes	the	form	(34)	

	

	 ℋ = −𝐸0 ∑ icosY𝜃#] − 𝜃#nW] − 𝐴#nW],#][ + cosY𝜃#] − 𝜃#]nW − 𝐴#]nW,#][p#,] 	,	 Eq.	2	

	

where	θ#] 	is	the	phase	of	the	superconducting	island	with	the	discrete	coordinates	(i,j)	of	

the	lattice,	and	𝐴#],rs ≡ (2𝑒 ℏ⁄ 𝑐) ∫ 𝑨rs
#] ∙ 𝑑𝑙	is	the	integral	of	the	vector	potential	from	island	

(i,j)	to	a	neighboring	island	(k,l).	The	critical	current	of	a	junction	is	given	by	𝐼0 ≡ (2𝑒 ℏ⁄ )𝐸0	

and	the	applied	current	enforced	by	boundary	conditions	is	𝐼W = (2𝑒 ℏ⁄ )𝐸W.	The	𝐴#],rs 	

summed	around	a	square	plaquette	obeys:		

	

	 𝐴#],#nW] + 𝐴#nW],#nW]nW + 𝐴#nW]nW,#]nW + 𝐴#]nW,#] = 2𝜋𝑓	,	

	

where	the	“frustration”	𝑓 = 𝐻𝑎8 Φ0⁄ 	is	a	constant	giving	the	average	number	of	flux	quanta	

Φ0 = ℎ𝑐 2𝑒⁄ 	of	the	external	magnetic	field	H	through	the	area	𝑎8	of	each	plaquette	of	the	

array.	We	also	introduce	the	fractional	charge	𝑞#] ,	obtained	as	the	gauge-invariant	phase	

sum	around	the	ijth	plaquette:		
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𝑞#] = 	 (1|2𝜋)iY𝜃#] − 𝜃#]nW − 𝐴#]nW,#][mod𝜋 + Y𝜃#]nW − 𝜃#nW]nW − 𝐴#nW]nW,#]nW[mod𝜋

+ Y𝜃#nW]nW − 𝜃#nW] − 𝐴#nW],#nW]nW[mod𝜋 + Y𝜃#nW] − 𝜃#] − 𝐴#],#nW][mod𝜋p		.	

	 Eq.	3	

	

We	limit	discussion	here	to	the	“maximal	frustration”	situation	with	𝑓 = W
8
	uniformly.	Then	

𝑞#] = ± W
8
:	the	ground	state	is	a	checkerboard	pattern	and	thus	it	is	convenient	to	introduce	

the	staggered	order	parameter	𝑞�#] = (−1)(#=])𝑞#] .	In	(34),	quenching	to	a	prescribed	

equilibrium	temperature	of	an	initially	random	flux	configuration	was	performed,	with	

dynamics	introduced,	including	thermal	noise,	in	a	classical	Langevin	MD	form.	The	

following	global	and	gauge-invariant	quantity	𝐶(𝑡)	was	monitored	in	time:		

	

𝐶(𝑡) = 𝑁n8 ∑ 𝑞#]#,] Y𝑞#=W] + 𝑞#nW] + 𝑞#]=W + 𝑞#]nW[	.	

	

Fig.	9	shows	the	global	quantity	𝐶(𝑡)	for	various	temperatures	T.	It	is	important	to	note	

that	the	transition	temperature	𝑇2 	for	𝑓 =
W
8
	is	𝑇2 = 0.45	(34);	for	𝑇 > 𝑇2 	long-range	flux	

order	and	superconductivity	are	lost.	𝑇2 	takes	the	form	of	a	Kosterlitz–Thouless	topological	

phase	transition	for	𝑓 = W
8
,	where	vortex-antivortex	unbinding	begins.	For	other	values	of	f,	

two	distinct	transitions	occur:	vortex-driven	and	domain-wall-driven	order-disorder.	

Effects	of	disorder	are	also	considered	in	Refs.	34	and	40.	

	

𝐶(𝑡)is	displayed	for	a	selection	of	temperatures	in	Fig.	9	to	illustrate	the	following	time	

observed	dependences:	
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i. T	«	𝑻𝒄	and	short	times.	Here,	flux	creep	is	observed	with	𝐶(𝑡)~𝑙𝑛(𝑡)	[Fig.	9(a)].	The	

asymptotic	value	of	C	first	decreases	as	T	is	increased	from	𝑇 ≪ 𝑇2 	and	then	increases	again	

(𝑇 ≳ 𝑇2).	This	can	be	understood	as	trapping	into	a	metastable	flux	configuration	at	very	

low	T	because	of	the	uniform	frustration;	as	T	is	increased,	thermal	tunneling	over	the	

frustration	barriers	is	allowed	and	C	approaches	closer	to	its	ground	state	value	(–1);	at	

higher	T	(≥	frustration	pinning	energy)	thermal	randomization	occurs	(𝐶 → 0	for	𝑇 ≫ 𝑇2).	

This	interpretation	is	supported	by	the	time	evolutions	of	the	actual	flux	structures	(See	

Ref.	34).	At	low	T,	a	𝑞�#] 	structure	is	observed	which	is	frozen	after	its	initial	relaxation	but	

continues	to	slowly	evolve	at	intermediate	T	and	is	nearly	random	at	high	T.	

ii. Intermediate	T	(𝟎. 𝟑𝑻𝒄 ≲ 𝑻 ≲ 𝟎. 𝟕𝑻𝒄)	Here,	after	the	initial	rapid	relaxation,	we	

observe	[Fig.	9(b)]	an	excellent	fit	to	a	glassy	(stretched-exponential)	form	of	relaxation	

(39).	Specifically,	Fig.	9(b)	shows	the	fit	to	𝐶�~𝑒𝑥𝑝i– (𝑡 𝜏⁄ )¢p,	for	which	we	find	𝛽 = 0.45	

(𝑇 = 0.2).	Strikingly,	essentially	the	same	𝛽	value	is	found	(34)	for	the	whole	temperature	

range,	suggesting	a	common	mechanism.	Indeed,	studies	of	flux	structure	evolution	(34)	

identifies	the	detailed	domain	growth	mechanisms	controlling	this	slow	relaxation	regime	

—	namely,	interrelated	roles	of	domain	wall	and	vortex	defects	with	respect	to	the	𝑓 = W
8
	

flux	ground	state,	with	domains	growing	by	vortex–antivortex	pairs	nucleating,	attaching	to	

domain	walls,	and	then	counter	propagating	around	the	domain.		

iii. 𝑻~𝑻𝒄(𝟎. 𝟒𝟓).	Here	critical	effects	dominate.	A	behavior	of	the	form	

𝐶�~𝑒𝑥𝑝i– [𝑙𝑛(𝑡 𝜏⁄ )]:p	is	in	fair	agreement	[Fig.	9(c)]	for	𝑇~𝑇2 ,	with	𝛿~0.9.	For	T	>	Tc	the	

flux	lattice	melts.		
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It	is	interesting	to	understand	the	connections	between	many	time	scales	and	many	length	

scales	in	glassy	systems.	Phenomenological	theories	based	on	typical	clusters	have	been	

proposed,	e.g.,	the	Lifshitz-Slyozov	(39)	law.	In	Ref.	(34),	the	spatial	Fourier	transform	g(k)	

was	monitored.	This	function	is	sensitive	to	the	distribution	of	domain	sizes	rather	than	the	

detailed	structure	of	domain	walls.	The	disordered	phase	at	𝑇 > 𝑇2 	is	indeed	characterized	

(34)	by	weight	on	many	k	scales,	whereas	the	large	domain	structures	for	𝑇 = 0.25	are	

characterized	by	only	a	few	dominant	k	scales.		

	

As	another	illustrative	example	of	coexisting	short-	and	long-range	iterations,	we	now	

discuss	the	thermal	fluctuations	of	particles	in	a	2-d	computational	box	that	have	a	short-

range	dipolar	attraction	and	a	long-range	repulsion	(41).	

	

Mesoscopic	and	inhomogeneous	ordering	of	charges	in	diverse	materials	such	as	(41)	high-

Tc	superconductors,	colossal	magnetoresistant	manganites,	and	2-d	electron	gas	systems	

has	been	a	subject	of	intense	study,	for	properties	including	superconductivity,	

pseudogaps,	and	transport	and	magnetic	responses.	The	phases	include	labyrinths,	stripes,	

and	clusters,	and	often	consist	of	“soft”	intermediately	ordered	patterns,	lying	between	

completely	ordered	and	completely	disordered	systems	(42,	43).	For	example,	

inhomogeneous	charge-ordering	phases	can	be	produced	by	a	competition	between	

repulsive	and	attractive	interactions.	In	the	case	of	the	metal	oxides,	holes	with	a	repulsive	

Coulomb	interaction	reside	in,	e.g.,	an	antiferromagnetic	background,	with	the	distortion	of	

the	spins	giving	rise	to	a	dipolar	attraction	between	holes,	and	allowing	the	formation	of	

clump,	Wigner	crystal,	and	stripe	phases	(44).	A	variety	of	other	microscopic	mechanisms	
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produce	a	similar	coexistence	of	long-range	repulsion	competing	with	directional	short-

range	attraction	in	a	wide	range	of	systems,	such	as	defects	or	dislocations	in	elastic	media,	

covalent	glasses,	systems	with	a	finite	density	of	small	polarons	(above),	and	soft	matter	

(45).		

	

For	illustration,	we	focus	here	on	the	examples	of	a	quasiclassical	model	(41)	for	charge	

ordering	of	holes	in	transition	metal	oxides,	in	which	the	particles	have	a	Coulomb	

repulsion	and	a	dipolar	attraction.	As	a	function	of	hole	density	(doping),	we	find	an	

extended	soft	phase	comprised	of	partially	ordered	filaments.	Ordered	clumps	form	for	

densities	below	this	region,	and	ordered	stripes	(Wigner	crystal-like	phases)	occur	above	

it.	The	soft	filamentary	structures	persist	to	high	temperatures.	Within	the	soft	phase	

region	there	is	a	low	temperature	onset	of	motion	along	the	filaments:	the	filaments	act	as	a	

template	for	correlated	percolation	of	particle	motion.	When	the	particle	positions	are	

averaged	over	long	times,	the	filaments	form	a	checkerboard	pattern.	All	of	the	rich	

multiscale	patterning	and	dynamics	arises	from	a	deceptively	simple	2-d	model	(41)	in	

which	effective	interaction	between	two	holes,	1	and	2,	a	distance	r	apart	is	given	by	

 

 𝑉(𝒓¬) = ­3

®̃
− 𝐴𝑒n®̃ °⁄ − 𝐵 cos(2𝜃 − 𝜙W − 𝜙8) 𝑒n®̃ ³⁄  . Eq.	4	

	

Here	𝑞 = 1	is	the	hole	charge,	𝜃	is	the	angle	between	r	and	a	fixed	axis,	and	𝜙W,8	are	the	

angles	of	the	magnetic	dipoles	relative	to	the	same	fixed	axis.	A	is	the	strength	of	the	short-

range	anisotropic	interaction	and	B	is	that	of	the	magnetic	dipolar	interaction	
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[𝐵 ≈ 𝐴 (2𝜋𝜉8)⁄ ],	which	we	assume	to	be	independent	variables.	Here	we	take	𝐴 = 0	and	

assume	𝜉~1 √𝑛⁄ .	

	

The	static	hole	configurations,	obtained	with	Monte	Carlo	simulations,	are	illustrated	in	Fig.	

10.	At	low	densities,	cross-like	clumps	form	and	organize	into	an	ordered	lattice	structure	

[Fig.	10(a)].	Above	a	density	𝑛 = 0.9,	the	clumps	begin	to	touch	and	are	replaced	by	

partially	disordered	filamentary	patterns	of	the	type	illustrated	in	Fig.	10(b)	for	𝑛 = 1.2	

and	Fig.	10(c)	for	𝑛 = 2.1.	These	filamentary	patterns	persist	within	a	glassy	(soft)	phase	

window	that	extends	up	to	𝑛 = 2.4,	where	a	more	ordered	anisotropic	Wigner	crystal	

pattern	forms	[Fig.	10(d)].	The	transition	from	the	filamentary	pattern	phase	of	Figs.	10(b)	

and	11(c)	to	the	anisotropic	Wigner	crystal	phase	of	Fig.	10(d)	occurs	when	the	

interactions	between	the	holes	are	dominated	by	the	Coulomb	repulsion.	

	

For	the	clump	region	in	Fig.	10(a),	the	superlattice	clump	structure	remains	stable	up	to	a	

very	high	temperature:	the	superlattice	and	clumps	break	up	simultaneously	around	𝑇¶ =

930𝐾,	where	the	melting	temperature	𝑇¶	is	measured	by	the	onset	of	diffusion	(see	Fig.	11	

inset).	In	general,	particles	are	confined	within	the	clump	up	to	this	temperature.	Such	

limited	motion	of	particles	within	the	clumps	begins	at	around	700	K.	The	anisotropic	

Wigner	crystal	phases	found	at	densities	𝑛 > 2.4	beyond	the	filamentary	soft	phase	are	

stable	up	to	about	700	K.	Above	this	temperature	the	entire	pattern	rapidly	melts.	

	

The	fluctuations	within	the	soft	phase	are	interesting.	Well	below	𝑇¶,	we	find	(41)	a	

modulated	liquid-like	phase,	in	which	the	charges	are	constrained	to	remain	within	a	
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filamentary	square	pattern,	but	are	free	to	move	along	the	filaments.	The	filamentary	

square	pattern	observed	throughout	the	soft	phase	contrasts	with	the	clump	phase	where	

the	holes	remain	localized	within	each	clump.	The	modulated	liquid	phase	remains	stable	

up	to	the	temperature	𝑇¶	at	which	the	pattern	itself	is	destroyed.	We	can	identify	a	second,	

lower	melting	temperature	𝑇¹	at	which	the	onset	of	the	square	(checkerboard)	modulated	

liquid	phase	occurs.	In	this	phase,	the	particle	motion	is	constrained	to	follow	the	square	

template.	Although	the	hole	density	is	not	high	enough	to	create	this	structure	as	a	static	

configuration,	when	the	holes	are	moving	their	effective	density	increases,	allowing	them	

to	form	the	square	pattern.	

	

The	temperature	𝑇¹	at	which	the	square	modulated	liquid	appears	varies	with	doping.	More	

disordered	hole	configurations	have	a	lower	𝑇¹.	The	onset	of	the	modulation	occurs	when	

the	structure	of	the	pattern	begins	to	change	globally	due	to	local	rearrangements	of	the	

holes.	We	can	detect	changes	in	the	structure	of	the	pattern	by,	e.g.,	monitoring	the	local	

orientation	of	a	Voronoi	polygon	centered	on	each	particle	at	fixed	T	(41).	Changes	in	the	

pattern	produce	increased	fluctuations	of	the	local	orientation.	The	onset	of	the	modulated	

liquid	occurs	when	enough	particles	are	fluctuating	on	average	to	allow	the	excitations	to	

percolate	through	the	system.	There	is	a	clear	decrease	of	𝑇¹	in	the	soft	phase	when	the	

modulated	liquid	appears.	𝑇¹	is	shown	as	a	function	of	density	in	Fig.	11,	with	a	dramatic	

decrease	in	𝑇¹	throughout	a	soft	phase	window	from	𝑛	~	0.9	to	𝑛	~	2.4.	This	corresponds	to	

the	geometrically	disordered	percolation	phase.	Outside	of	this	soft	window,	particle	

motion	does	not	occur	until	significantly	higher	temperatures	are	reached,	especially	for	

𝑛 < 0.9.	In	the	soft	phase	window,	we	observe	correlated	percolation:	the	onset	of	
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structural	percolation	coincides	with	a	highly	directional	softness.	This	is	in	contrast	to	the	

isotropic	melting	that	occurs	at	much	higher	temperatures.	Thus,	we	have	a	system	which	

contains	a	rigid	template	of	soft	filaments.	At	𝑇¹,	a	type	of	dislocation	mobility	transition	

occurs	in	which	a	local	excitation	becomes	delocalized.	In	this	case,	because	the	effective	

interaction	between	particles	along	the	chain	is	highly	nonlinear,	propagation	of	a	

(dislocation-like)	excitation	can	occur.	

	

Transition	metal	oxides,	and	related	materials,	exhibit	complex	interplays	of	spin,	charge,	

orbital,	and	lattice	so	that	a	simplified	model	such	as	the	above	should	not	be	over-

interpreted.	Nevertheless,	some	implications	are	suggestive.	Namely,	charge-ordered	states	

may	persist	up	to	very	high	temperatures,	but	signatures	of	disordered	filamentary	states	

occur	at	much	lower	temperatures	with	a	transition	to	a	checkerboard	state	at	

intermediate	temperatures.	The	co-existing	short-	and	long-range	interactions	will	appear	

only	upon	(polaronic)	localization	of	holes,	which	onsets	below	a	characteristic	

temperature.	Above	this	temperature,	a	more	metallic-like	electronic	state	is	expected.	

External	fields	could	easily	induce	currents	along	the	filamentary	paths	in	the	soft	phase.	

The	soft	phase	at	𝑇¹ < 𝑇 < 𝑇¶	also	shows	similarities	with	the	inhomogenous	states	

observed	in	manganite	oxides	between	the	true	critical	temperature	and	a	higher	

temperature	at	which	short-range	order	first	appears	(46).	Also,	some	stripe-based	

theories	for	superconductivity	require	fluctuating	stripes	(47).	An	important	feature	of	the	

soft	phase	is	that	the	fluctuations	are	predominantly	on	percolating	filaments	rather	than	

meandering	of	the	filaments	themselves.	The	fluctuating	checkerboard	state	may	thus	

provide	a	good	starting	point	for	introducing	detailed	local	quantum-mechanical	effects.		
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Although	we	have	focused	on	a	simple	specific	model	in	Eq.	4,	extensive	further	studies	

have	found	qualitatively	similar	soft	phase	for	other	models	with	competing	long-	and	

short-range	interactions.	[See	Ref.	(33)	for	a	comprehensive	review.]	

6. SUMMARY 

This	article	is	intended	to	illustrate	the	prevalence	and	importance	of	competitions	and	

constraints	as	sources	of	mesoscopic	complexity,	which	is	so	important	as	the	bridge	from	

microscopic	to	macroscopic	scales	in	many	classes	of	hard,	soft,	and	biological	matter	(2,	

3).	We	have	emphasized	the	role	of	elasticity	in	strongly-correlated	(quantum)	materials,	

including	many	perovskites,	as	well	as	f-electron	materials.	Understanding	the	mesoscale	is	

critical	to	controlling	landscapes	(48)	of	multiscale	structures	and	to	materials	design	with	

desired	functionality.	The	examples	we	used	are	not	exhaustive.	For	instance,	competing	

timescales	and	time-dependent	driving	of	nonlinear	systems	is	another	rich	source	of	

mesoscopic	spatio-temporal	patterns	resulting	from	induced	competing	length	scales:	for	

instance,	Ref.	(49)	analyzes	patterns	of	“intrinsic	localized	modes,”	having	applications	to	a	

number	of	materials	and	condensed	matter	systems.	

	

The	examples	we	have	discussed	illustrate	the	importance	of	the	scientific	method	to	guide	

studies	of	materials	synthesis–structure–property	relationships	—	iterating	data,	models,	

analysis,	and	computation	to	understand,	control,	design,	and	mitigate	phenomena.	The	

future	for	the	scientific	method	toolbox	is	very	bright.	The	experiment/observational	and	

computational/visualization	data	explosion,	now	joined	by	data	analysis	tools	(machine	
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learning,	artificial	intelligence,	etc.)	for	merging	and	even	co-designing	these	data,	is	an	

exciting	frontier.	The	renaissance	of	topology	(e.g.,	skyrmions)	and	geometry,	for	both	

classical	and	quantum	materials,	will	also	guide	future	exploration	—	e.g.,	better	

understanding	relations	between	structural	and	quantum	wave-function	topology	

(including	entanglement	and	non-adiabatic	effects),	and	understanding	characteristic	

smoothing	of	singularities	by	local	coupling	to	globally	weak	degrees-of-freedom.	Active	

interfaces	and	thin	films	are	very	promising	for	technology,	as	control	of	active	organic,	

inorganic	and	biological	matter	improves	—	including	ultrafast	spectroscopic	control	of	

charge-transfer	and	associated	lattice	changes	(50)..	An	intriguing	aspect	of	geometry	for	

materials	science	is	whether	macroscopic	properties	depending	on	internal	interfaces	are	

optimized	(intrinsically	or	by	engineering)	with	space-filling	(fractal)	organization	of	the	

interfaces.	Certainly,	advanced	(including	additive)	manufacturing	methods	will	allow	

access	to	properties	from	materials	topologies	and	geometries	beyond	even	nature’s	

evolution.	

	

Materials	play	fundamental	roles	in	the	health	and	prosperity	of	society.	It	is	not	accidental	

that	the	remarkable	new	technologies	that	society	is	recently	experiencing	are	accelerating	

in	the	same	“century	of	complexity”	era	for	science	—	they	are	both	largely	the	results	of	

the	new	experimental	and	simulation	tools.	As	throughout	history,	the	new	technologies	

are	also	resulting	in	new	societal	challenges	in	health,	energy,	natural	resources,	climate,	

national	security,	space,	cyber,	social	media,	etc.,	sectors,	but	now	at	a	very	accelerated	

pace.	It	is	fortunate	that	this	century	is	generating	the	tools	and	training	for	the	STEM	

workforce	to	play	its	part	in	addressing	the	societal	challenges	and	opportunities	—	an	
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exciting	time	for	the	historic	cycle	of	science–society	compacts	to	make	a	positive	future	

history.	
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Fig. 1. Examples of an evolution of conceptual frameworks for hard, soft, and biological matter 

— landscapes and functional complexity. Examples shown are perovskites, DNA, molecular 

sieves, multilayers, and carbon nanotubes. 
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Fig. 2. Symmetry-allowed transitions in 2-d for the four crystal systems. The dark lines are 

guides to the eye for deformations. There is a one-component strain order parameter for (a) 

the SR square (S) to rectangle (R) case, driven by 𝜀8; (b) the RO rectangle to oblique (O) case, 

driven by 𝜀8; and (c) the SC square to centered rectangle (C) case, driven by 𝜀R. A two-

component OP, or two one-component OPs, lead(s) to (d) the TR triangular (T) to centered 

rectangle case, driven by 𝜀8, 𝜀R;(e) the TO triangle to oblique case, driven by 𝜀8, 𝜀R; and (f) the 

SO square to oblique case, driven by 𝜀8	and 𝜀R, independently. Copyright 2019, American 

Physical Society, July 25, 2019, License number RNP/19/JUL/017073. 
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Fig. 3. Square to rectangle (SR) case: simulated interface propagation. The columns show (top 

to bottom) temporal sequences for time t of 40, 80, 160, and 1000 ps. The initial conditions are 

𝜀8(𝑟, 𝑡 = 0), 𝑒R(𝑟, 𝑡 = 0) random around zero mean. (Parameters defined in Ref. 6.) The time 

step is ∆t=0.002. Left column: the OP deviatoric strain 𝜀8(𝑟, 𝑡), showing domain walls 

propagating under the repulsive long-range compatibility potential. Right column: non-OP shear 

strain, 𝑒R(𝑟, 𝑡), propagating outwards with interfaces, concentrated at corners. Copyright 2019, 

American Physical Society, July 25, 2019, License number RNP/19/JUL/017073. 
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Fig. 4. SR case: simulated strain evolution, with an added fixed, time-independent, Lorentzian-

profile local stress. The sequence (top to bottom), for time t=40, 60, 76, and 106 ps with the 

same parameters as Fig. 3. Left column: dynamic texturing of deviatoric strain 𝜀8(𝑟, 𝑡). The 

system reduces the energy from the imposed single-sign strain by elastic “photo-copying,” or 

adaptive screening of the long-range elastic interaction, generating higher multipoles. Right 

column: the non-OP shear strain 𝑒R(𝑟, 𝑡),	follows the OP propagation. Copyright 2019, 

American Physical Society, July 25, 2019, License number RNP/19/JUL/017073. 
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Fig. 5. Modes and energy landscape. (a) Atomic-scale lattice distortion modes (positive) for a 

monatomic square lattice in 2-d. (b) Energy landscape along 𝑠P = 0 in 𝑠O − 𝑠P plane for two 

different positive values of the harmonic modulus for short-wavelength distortion 𝐵 in the 

energy expression below. The global minimum of the blue curve is at 𝐸 = −0.11. The solid 

circles in the inset schematically represent the locations of the local minima in the 𝑠O −

𝑠P	plane. We consider the situation in which the undistorted state itself is a local energy 

minimum and the distorted state is the global energy minimum. The energy expression for our 

2-d square lattice model is 𝐸 = 𝐸¼½¾¿ + 𝐸ÀÁ½ÂÃ + 𝐸Ä½ÅÆ¼Ç¾¿, where 𝐸¼½¾¿ = ∑ 𝐴W𝑒W8 2⁄ +ÀÇÃÈÀ

𝐴8𝑒88 2⁄ + 𝐴R𝑒R8 2⁄ , and 𝐸ÀÁ½ÂÃ = ∑ 𝐵 Y𝑠O8 + 𝑠P8[ 2⁄ +ÀÇÃÈÀ 𝐺W Y𝑠O4 + 𝑠P4[ 4⁄ + 𝐺8𝑠O8𝑠P8 2⁄ +

𝐻W Y𝑠OÊ + 𝑠PÊ[ 6 + 𝐻8𝑠O8𝑠P8Y𝑠O8 + 𝑠P8[ 6⁄Ì , and 𝐸Ä½ÅÆ¼Ç¾¿ = ∑ 		𝐶R Y𝑠O8 − 𝑠P8[ 𝑒R⁄ÀÇÃÈÀ . 𝐸¼½¾¿ 

contains the harmonic energy for dilatation (e1), shear (e2) and deviatoric (e3) long-wavelength 

modes, which lead to an anisotropic long-range interaction. The symmetry-allowed energy 

terms for short-wavelength modes Y𝑠O, 𝑠P[ are considered up to sixth order to include features 

associated with the first-order phase transitions. 𝐸Ä½ÅÆ¼Ç¾¿ represents the coupling between 

short- and long-wavelength modes, where the positive C3 is the strength of this coupling. In 

the homogeneous phase, all modes are independent and E can be minimized separately for 
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each mode. Such separate minimization gives 𝑒W = 𝑒8 = 0 and 𝑒R = −𝐶R Y𝑠O8 − 𝑠P8[ 𝐴R⁄ , which 

renormalize the fourth-order coefficients and provide the condition to have both distorted and 

undistorted phases as local minimum states in the 𝑠O − 𝑠P plane. Copyright 2019, Nature.	
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Fig. 6. Results of simulations for the shallow local minimum case (blue curve in Fig. 6b) on a 32 

x 32 site lattice with periodic boundary conditions. (a) The 𝑝R = 𝑠O8 − 𝑠P8 field initial 

configuration. (b-g) Time-sequence of 𝑝R during energy relaxation. (h) Final stable stage. (Dark 

red and dark blue represent	±	𝑠08, except in (a) where they correspond to 	±	(2.6𝑠0)8. 𝑠0 is the 

value of 𝑠O or 𝑠P at the global minimum distorted state.) (i) Local electronic density-of-states 

(DOS) at 𝜖Í = 0 for the distorted pattern in (f) (dark blue and dark red correspond to 0 and 

0.5). (j) Typical local DOS versus electronic energy within the distorted and undistorted 

regions. The small finite DOS within the gap is due to the exponentially decaying leakage of 

electronic state from the metallic region: a “pseudogap.” The distorted lattice with 𝑠O and 

negative 𝑒R, or equivalently that with 𝑠P and positive 𝑒R (see Fig. 6a), leads to a gap in the DOS 

near electronic energy = 0. Thus if 𝜖Í lies in the gap, the distorted lattice behaves as an 

insulator. In the structure without distortions, the DOS has no gap, and the electrons are in a 
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metallic state. Crucially, the study of the inhomogeneous phase shown here in (a–h) requires 

that lattice compatibility constraints between the distortion variables be satisfied. Elimination 

of 𝑒W, 𝑒8 and 𝑒R	subject to these constraint equations leads to an energy expression in terms of 

𝑠O and 𝑠P, which is numerically minimized using various initial configurations. The electronic 

properties in (i) and (j) are obtained by adiabatically solving the SSH Hamiltonian on the elastic 

templates. Copyright 2019, Nature.	
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Fig. 7. Results of simulations for the deep local minimum case (red curve in Fig. 6b) on a 64 x 

64 site lattice. a. 𝒑𝟑 field for the stable elastic texture (same colour scheme as Fig. 7). b. Local 

DOS configuration at 𝜖< = 0. Blue and green regions are distorted insulator and undistorted 

metal, respectively. c. Typical local DOS versus energy within distorted and undistorted 

regions. The depth of the local energy minimum changes the nature of the inhomogeneity, 

from nanometre-scale fluctuations to micrometer-scale stable domains. In manganites, the 

harmonic modulus for the short-wavelength distortions, which changes the depth of the local 

energy minimum in Fig. 6b, may be varied by changing the size of the ions. The effect of the 

size of ions on the modulus may be represented through an additional symmetry-allowed 

coupling 𝐶W𝑒WY𝑠O8 + 𝑠P8[ in our model. The localized ions create an isotropic strain (𝑒W), which 

renormalizes the harmonic modulus for the short-wave-length distortion modes through this 

cubic anharmonic term. Other physics, such as magnetism and kinetic energy of electrons, 

particularly coupled with the buckling of oxygen octahedra, can also change the effective 

modulus and thus the energy landscape. Copyright 2019, Nature.	
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Fig. 8. (Color online) Configurations of small polarons illustrating the angular dependence of the 

strain field favoring diagonal strings. Copyright 2019, American Physical Society, July 25, 2019, 

License number RNP/19/JUL/017074. 
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Fig. 9. Relaxation time dependence of the global correlation function 𝐶(𝑡)	for frustration 𝑓 = W
8
 

and disorder ∆= 0. At t =0, the flux configuration is random. (a)–(c) Results for different values 

of the final temperature. Copyright 2019, American Physical Society, July 25, 2019, License 

number RNP/19/JUL/017075. 
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Fig. 10. Static positions of holes for different densities:(a) Clump phase, 𝑛 = 0.6; (b) soft phase, 

𝑛 = 1.2; (c) soft phase, 𝑛 = 2.1; (d) anisotropic Wigner crystal phase, 𝑛 = 2.7. Copyright 2019, 

American Physical Society, July 25, 2019, License number RNP/19/JUL/017076. 

 

	

Fig. 11. Onset temperature 𝑇¹ of modulated square liquid state as a function of hole density 𝑛. 

Inset: Melting temperature of pattern 𝑇¶ (circles) and 𝑇¹ (black squares). Copyright 2019, 

American Physical Society, July 25, 2019, License number RNP/19/JUL/017076. 


